A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions
نویسندگان
چکیده
Blur removal is an important problem in signal and image processing. The blurring matrices obtained by using the zero boundary condition (corresponding to assuming dark background outside the scene) are Toeplitz matrices for one-dimensional problems and block-Toeplitz–Toeplitzblock matrices for two-dimensional cases. They are computationally intensive to invert especially in the block case. If the periodic boundary condition is used, the matrices become (block) circulant and can be diagonalized by discrete Fourier transform matrices. In this paper, we consider the use of the Neumann boundary condition (corresponding to a reflection of the original scene at the boundary). The resulting matrices are (block) Toeplitz-plus-Hankel matrices. We show that for symmetric blurring functions, these blurring matrices can always be diagonalized by discrete cosine transform matrices. Thus the cost of inversion is significantly lower than that of using the zero or periodic boundary conditions. We also show that the use of the Neumann boundary condition provides an easy way of estimating the regularization parameter when the generalized cross-validation is used. When the blurring function is nonsymmetric, we show that the optimal cosine transform preconditioner of the blurring matrix is equal to the blurring matrix generated by the symmetric part of the blurring function. Numerical results are given to illustrate the efficiency of using the Neumann boundary condition.
منابع مشابه
Fast Preconditioners for Total Variation Deblurring with Antireflective Boundary Conditions
In recent works several authors have proposed the use of precise boundary conditions (BCs) for blurring models and they proved that the resulting choice (Neumann or reflective, antireflective) leads to fast algorithms both for deblurring and for detecting the regularization parameters in presence of noise. When considering a symmetric point spread function, the crucial fact is that such BCs are...
متن کاملA Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملNonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem
This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.
متن کاملImage Deblurring, Gaussian Markov Random Fields, and Neumann Boundary Conditions
In this paper we consider the inverse problem of image deblurring with Neumann boundary conditions. Regularization is incorporated by using Gaussian Markov random fields (GMRFs) to model an appropriate prior on the image pixel values. We provide a linear algebraic framework for GMRFs, and we establish an important connection between GMRFs studied in the statistical literature, and negative-Lapl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 1999